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Abstract: Developing novel methods for the analysis of intracellular signaling networks is essential for 

understanding interconnected biological processes that underlie complex human disorders. A fundamental 

goal of this research is to quantify the vulnerability of a signaling network to the dysfunction of one or 

multiple molecules, when the dysfunction is defined as an incorrect response to the input signals. In this 

study, we propose an efficient algorithm to identify the extreme signaling failures that can induce the 

most detrimental impact on the physiological function of a molecular network. The algorithm finds the 

molecules, or groups of molecules, with the maximum vulnerability, i.e., the highest probability of 

causing the network failure, when they are dysfunctional. We propose another algorithm that efficiently 

accounts for signaling feedbacks. The algorithms are tested on experimentally verified ERBB and T-cell 

signaling networks. Surprisingly, results reveal that as the number of concurrently dysfunctional 

molecules increases, the maximum vulnerability values quickly reach to a plateau following an initial 

increase. This suggests the specificity of vulnerable molecule(s) involved, as a specific number of faulty 

molecules cause the most detrimental damage to the function of the network. Increasing the number of 

simultaneously faulty molecules does not further deteriorate the network function. Such a group of 

specific molecules whose dysfunction causes the extreme signaling failures can better elucidate the 

molecular mechanisms underlying the pathogenesis of complex trait disorders, and can offer new insights 

for the development of novel therapeutics.  
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INTRODUCTION 

Cellular functions are largely regulated by signaling events within the complex intracellular molecular 

networks [1-3]. Signals are typically transmitted from the cell membrane to the nucleus via intracellular 

signaling networks, to regulate some target molecules and alter different cellular functions. Intracellular 

signaling networks have been studied to address a variety of different questions [1-8]. 

An important application of the studies on intracellular signaling networks is in target discovery 

and drug development. In the area of targeted therapies in pharmaceutical industry, a wide variety of 

highly effective therapeutics have been successfully developed that can target the function of a selective 

set of molecules within the complex intracellular signaling networks. Fault diagnosis is a platform 

technology for finding such selective targets by using computational and systems biology techniques that 

have been developed and optimized over the past few years [9-12]. The main purpose of such technology 

developments is to understand how vulnerable the entire molecular network is to the dysfunction of each 

molecule, or a specific group of molecules. For the fault diagnosis of molecular networks, prior studies 

have focused on intracellular signaling networks with three main components of input molecules, 

intermediate signaling molecules, and output molecules. Input molecules of the network are typically 

ligands that bind to their receptors at the cell membrane. This ligand binding initiates a cascade of 

intracellular events that involve activation or inhibition of secondary messengers, G proteins, kinases, 

phosphatases, and other intracellular signaling molecules. Eventually through a cascade of signaling 

events initiated at the cell membrane, output molecules such as transcription factors are regulated, which 

ultimately alter cellular functions by changing the gene expression pattern [9-12].  

In the realm of fault diagnosis technology development, the dysfunctional state of a molecule can 

be defined as the failure to respond correctly to the input signals, which may further propagate into 

incorrect responses at the output of the network. For this analysis, we have defined the vulnerability level 

of a molecule as the probability of having incorrect network responses when that specific molecule is 

dysfunctional. Vulnerability analysis can be performed for the dysfunction of a single as well as a group 

of molecules. The importance of the latter can be attributed to the widely known observations that the 

most common human disorders, such as cancer or schizophrenia, are reported to be associated with the 

dysfunction of multiple molecules rather than a specific single molecule [13,14]. This contrasts with some 

rare genetic disorder when a single molecule or a genetic mutation is sufficient to cause the pathology 

[15]. By computing the vulnerability level of a molecule or a group of molecules, one can identify and 

rank the key molecular components for gaining a desired response, and then compute how much they 
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contribute to the failure of the network. From the drug development stand points, the highly vulnerable 

molecules can be used as the molecular targets of novel therapeutics. 

To analyze a molecular network, first a biologically relevant model needs to be adopted. Here we 

consider the class of discrete models such as Boolean models [1-6,8,16] in which each molecule has a 

binary activity state of 0 or 1. In such models, the biological equivalent of the binary levels can be the 

activation of a molecule, i.e., the binary state of 1, or the inhibition of a molecule, i.e., the binary state of 

0, specified by the states of its upstream molecules. They are particularly useful as they do not need 

detailed kinetic information and still provide certain biologically relevant insights and predictions. 

Compared to continuous differential equations models [7], discrete models do not require the knowledge 

of many mechanistic details and numerous kinetic parameters, and are more appropriate for our study in 

this paper. 

The main goal of this paper is to develop a systematic method to explore the extreme failures of 

intracellular signaling networks. We define the extreme signaling failure as a pathological phenomenon 

that results in the highest probability of network failure, where the network failure is defined as the level 

of departure of the network response from its normal or expected response. The said pathological 

phenomenon is characterized to be emerged from the presence of one or more dysfunctional molecules in 

the network. It is conceivable that different individual dysfunctional molecules can result in different 

levels of probabilities of the network failure. It is not clear, however, what happens if two or more 

molecules are concurrently dysfunctional, and if the network failure probability increases with the number 

of simultaneously dysfunctional molecules or not. It is also of interest to have an efficient algorithm to 

determine the maximum possible network failure probability, over the large number of all possible groups 

of dysfunctional molecules. The computational complexity of an exhaustive search approach for a 

network with K molecules is extremely high, in the order of 
/2KK , which is unmanageable as K increases. 

Here we introduce a computationally efficient algorithm with a much less running time in the order of 
3K

, for identifying the extreme signaling failures, considering multiple dysfunctional molecules. This study 

is particularly important in the context of complex disorders with unknown molecular sources, where 

more than one molecule is observed to be involved in the pathology [13,14]. 

In this study we first present our extreme signaling failure analysis results on the ERBB signaling 

network of [17] and the T cell signaling network of [2]. Then, we analyze the computational complexity 

of the proposed algorithm and compare it with the exhaustive search. Afterwards, we provide the details 

of the vulnerability analysis equations and the proposed extreme signaling failure analysis algorithm in 

Methods, Sections A and B, respectively. Moreover, we propose another algorithm in Section S1 of 
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Supplementary Information, that determines the number of time points (clock cycles1) needed for network 

analysis and simulation while computing the vulnerability levels, so that we prevent running network 

simulations longer than what is needed. We present the results of this algorithm, when applied to the 

ERBB and the T cell signaling networks, in Sections S2 and S3, respectively, and finally conclude the 

paper with some concluding remarks. 

 

RESULTS OF THE EXTREME SIGNALING FAILURE ANALYSIS 

The extreme signaling failure algorithm was applied to two networks: a small signaling network that 

regulates the transmembrane tyrosine kinase ERBB [17], a therapeutic target in breast cancer, and a larger 

T cell signaling network [2] involved in a variety of immune system response. Results reveal the impact 

of the number of dysfunctional molecules in causing the extreme signaling failure. 

A. Extreme Signaling Failure Study of ERBB Network 

The ERBB network (Figure 1) has one input and one output. The biological equivalent for the input 

molecule is the Epidermal Growth Factor (EGF), and for the output molecule is the Retinoblastoma 

Protein (pRB). This network has been studied in the context of breast cancer and understanding the 

mechanism of action of few drug molecules [17]. Figure 1 shows the biological components of this 

network, including the ligand, its receptors, and the specific signaling molecules with their activation or 

inhibition states being changed after the binding of EGF to its receptors. Through the cascade of signaling 

events involving activation (green edges in Figure 1) or inhibition (red edges in Figure 1) of several 

intracellular molecules, eventually the output molecule pRB is activated. Equations that specify how the 

activity of each molecule is regulated by its inputs are listed in Table S1. To model a dysfunctional 

molecule, we assume its activity state is either stuck-at-0, SA0, or stuck-at-1, SA1, each with a 

probability of 1/2 [9]. 

Let N be the number of molecules that are simultaneously faulty, i.e., dysfunctional, in the 

network. According to the developed vulnerability analysis equations (Methods, Section A) and using the 

proposed extreme signaling failure algorithm (Methods, Section B), the network maximum vulnerability 

is computed for each N (Figure 2). Here N varies from 1 to 18, since the number of intermediate 

molecules in the network (Figure 1) is 18. For any N, the network maximum vulnerability is the highest 

probability of network failure, where the network failure is defined as the level of departure of the 

 
1 In the context of network simulation over time, the clock represents a time reference, i.e., a time axis, 

divided into intervals called clock cycles. Therefore, each clock cycle corresponds to a specific time point at which 

the network response is simulated. 
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network response from its normal values. In other words, the network maximum vulnerability for a given 

N is a parameter that quantifies the extreme possible signaling failure when there are N faulty molecules 

in the network. 

An unexpected observation is that as the number of faulty molecules N increases, the maximum 

vulnerability values do not increase accordingly (Figure 2). While we see a maximum vulnerability 

increase going from single faults to double faults, i.e., 1 and 2N =  respectively, the maximum 

vulnerability quickly reaches a plateau and no longer increases further afterwards. Another interesting 

observation is that the smallest N for which we see the highest maximum vulnerability in this network is 

2N = , i.e., double faults. This means there are some pairs of faulty molecules that cause the most 

 

Figure 1. The experimentally verified ERBB signaling network reproduced from the study of Sahin et 

al [17]. The green solid edges represent activatory interactions and the red dashed edges represent 

inhibitory interactions. The green and red branching-out square markers pinpoint the crossing edges. 

The input and output nodes represent EGF and pRB, respectively. 
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detrimental damages to the signaling network, and increasing the number of faulty molecules can no 

further deteriorate the function of outputs. In other words, this analysis suggests that it may be enough to 

have only a few concurrently faulty molecules to disturb the whole network’s functioning, which may 

eventually result in the development of the pathology. 

In addition, we observe that when 12,N   the maximum vulnerability level starts decreasing. 

The decrease occurs because when the number of faulty molecules increases, erroneous signals of some 

“more harmful” faulty molecules exhibiting high vulnerability levels are blocked/masked by the 

additional “less harmful” faulty molecules (that have lower vulnerability levels). In other words, when the 

number of faulty molecules N is large, some pathways from the very harmful molecules to the network 

output may be cut off and disrupted because of the additional dysfunctional molecules in the pathways, 

that protect the network output from being affected by those very harmful molecules. That is why the 

maximum vulnerability level decreases after a certain N value, 12N   in Figure 2. To exemplify, let us 

compare 12N =  and 13N =  cases, in which the maximum vulnerability levels are 0.86 and 0.75, 

respectively. When 12,N =  the group of 12 molecules exhibiting the maximum vulnerability level of 

0.86 contains ERBB1, ERBB2, ERBB3, ERBB1_2, ERBB1_3, ERBB2_3, IGF1R, AKT1, MEK1, ER-𝛼, 

CyclinD1, and CyclinE1. The remaining fault-free molecules are c-MYC, p21, p27, CDK2, CDK4, and 

CDK6. All these six molecules are in the downstream of the above 12 faulty molecules, and they all have 

 

Figure 2. The ERBB signaling network maximum vulnerability levels, when there are N dysfunctional 

molecules in the network, computed using the proposed algorithm to study worst possible signaling 

failures. 
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low single fault vulnerability levels, i.e., 0.25 for c-MYC, p21, p27, CDK4, CDK6, and 0 for CDK2. 

When 13,N =  the group of 13 molecules with maximum vulnerability will include one of these six 

molecules that have low individual vulnerabilities, and are also in the downstream of the group of 12 

maximally vulnerable molecules. Therefore, when 13,N =  some effects of the more harmful signals are 

blocked by the downstream additional faulty molecule that has a low individual vulnerability. This 

reduces the maximum vulnerability when N changes from 12 to 13. As N increases beyond 13, the groups 

of faulty molecules will include even more of those six slightly vulnerable molecules, which can be the 

reason for the further decrease of the maximum vulnerability. 

B. Extreme Failure Study of T cell Signaling Network  

The T cell network is a much more complex real biological network that has three inputs and fourteen 

outputs. Figure 3 shows the biological components of this network, including the ligands, several 

receptors, and the specific signaling molecules with their activation or inhibition states being altered after 

the binding of the input molecules to their receptors. Through the cascades of several signaling events that 

involve activation (green edges in Figure 3) or inhibition (red edges in Figure 3) of numerous intracellular 

molecules, the output molecules are ultimately activated or inhibited. The biological equivalents of input 

molecules are cluster of differentiation 28 (cd28), cluster of differentiation 4 (cd4) and ligand-bound T-

cell receptor (tcrlig) [2]. For the output molecules, biological equivalents are Src homology region 2 

domain-containing phosphatase-2 (shp2), B-cell lymphoma-extra large (bclxl), p70s, activator protein 1 

(ap1), serum response element (sre), branched-chain amino acid transaminase (bcat), cytochrome c1 

(cyc1), p21c, p27k, forkhead transcription factor Foxo1 (fkhr), p38, cAMP - cyclic adenosine 

monophosphate - response elements (cre), nuclear factor of activated T cells (nfat), and nuclear factor 

kappa-light-chain-enhancer of activated B cells (nfkb) [2]. Equations that specify how the activity of each 

molecule is regulated by its inputs are listed in Table S2. 

Using the developed vulnerability analysis equations (Methods, Section A) and the proposed 

extreme signaling failure analysis algorithm (Methods, Section B), the network maximum vulnerability is 

computed for each N (Figure 4), where N is the number of molecules that are simultaneously faulty. 

Similar to the ERBB network, for all the outputs, as the number of faulty molecules N increases, again 

maximum vulnerability values do not increase accordingly (Figure 4). Moreover, for the network outputs 

ap1, bcat and p70s, while we see a maximum vulnerability increase going from single faults to double 

faults, 1 and 2N = , respectively, the maximum vulnerability does not increase more afterwards. For 

these outputs, the smallest N for which we see the highest maximum vulnerability in this network is 
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2,N =  i.e., double faults. This means that there are some pairs of faulty molecules that cause the most 

detrimental damage for these outputs, and increasing the number of faulty molecules does not further 

deteriorate the function of these outputs. However, for some other network outputs, including cre, nfat, 

p38, shp2 and sre, the highest maximum vulnerability occurs when 1,N =  which implies that there are 

some single faulty molecules that can individually create the extreme signaling failures at these specific 

outputs (Figure 4). 

  

COMPUTATIONAL COMPLEXITY OF THE EXTREME SIGNALING FAILURE 

ALGORITHM 

In this section, we determine the computational complexity of the proposed algorithm and compare it with 

the running time of exhaustive search. The extreme signaling failure analysis can be performed via an 

exhaustive search. This means that if one needs to find the maximum network vulnerability when there 

are N faulty molecules in the network, all possible groups of N faulty molecules must be considered one 

by one, and the vulnerability value for each group needs to be computed. For example, consider a network 

 

Figure 3. The experimentally verified T cell signaling network reproduced from the study of Saez-

Rodriguez et al [2]. The green solid edges represent activatory interactions and the red dashed edges 

represent inhibitory interactions. The green and red branching-out square markers pinpoint the 

crossing edges. 
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with 50K =  molecules. When 2,N =  the total number of pairs of faulty molecules that the exhaustive 

search has to examine can be shown to be 1,225 (see Equation (1)). For 5,N =  however, the total number 

of groups of five faulty molecules increases to 2,118,760. This computational complexity becomes highly 

prohibitive as the network size K increases. In what follows, we show that the proposed extreme signaling 

failure algorithm is much less complex than the exhaustive search. 

To determine and compare the computational complexities, let K be the number of molecules in a 

network, and N be the number of molecules that are simultaneously faulty in the network. The total 

 

Figure 4. The T cell signaling network maximum vulnerability levels for the network outputs ap1, 

bcat, cre, nfat, p38, p70s, shp2 and sre, when there are N dysfunctional molecules in the network. 
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number of groups of N faulty molecules out of K molecules, 1 ,N K   is given in Equation (1), where 

( , )C K N  represents the number of possible combinations. 

 
( )

( ) ( )
( )

1 ... ( 1)!
( , )

! ! !

N
K K K NK

C K N O K
K N N N

 −   − −
= = =

−
 (1) 

Here the O-notation stands for the asymptotic upper bound [18]. The term ( )NO K  represents the 

computational complexity of ( , )C K N  as a function of K and N. 

The computational complexity of the exhaustive search ( )K  is the number of all possible 

groups of N faulty molecules for which vulnerabilities have to be computed, 1,..., ,N K=  i.e., 

( ) ( ,1) ... ( , )K C K C K K = + + . To simplify the notation and without loss of generality, assume K is even. 

We note that ( , )C K N  has a maximum at / 2N K=  [18], it is symmetric, i.e., ( , ) ( , )C K N C K K N= − , 

1,..., ( / 2) 1N K= − , and ( , ) 1.C K K =  Therefore, the computational complexity of the exhaustive search 

simplifies to 

 
( /2) 1

1

( ) ( ,1) ... ( ,( / 2) 1) ( , / 2) ( ,( / 2) 1) ... ( , ),

2 ( , ) ( , / 2) 1.
K

N

K C K C K K C K K C K K C K K

C K N C K K



−

=

= + + − + + + + +

= + +
 (2) 

With ( , / 2)C K K  being the dominant term in Equation (2) when K is large, and also using Equation (1), 

the exhaustive search computational complexity can be finally written as 

 ( )/2( ) KK O K =  (3) 

To determine the computational complexity of the proposed extreme signaling failure algorithm 

(Methods, Section B), we note that initially all groups of one, two and three faulty molecules are 

considered, 1,2,3.N =  For the rest, 4,..., ,N K=  only ( 1)K N− −  vulnerabilities are computed. This is 

inspired by the observation [11] that typically a molecule with a high vulnerability appears in larger 

groups of molecules with high vulnerabilities, and based on our experiments, 4N   is large enough and 

provides good accuracy, as discussed in the paragraph immediately after Equation (5). Therefore, the 

computational complexity ( )K  of the algorithm can be written as 

 
3

1 4
( ) ( , ) ( ( 1)) .

K

N N
K C K N K N

= =
= + − −   (4) 
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It can be verified that ( ,3)C K  in the above expression is the dominant term, when K is large. This 

simplifies the proposed algorithm computational complexity to 

 ( )3( ) .K O K =  (5) 

Upon comparing Equations (3) and (5), we note that since ( ) ( )3 /2 ,KO K O K  the proposed 

algorithm is much simpler and therefore much faster than the exhaustive search. For example, for a 

network with 50K =  molecules, the proposed algorithm complexity is in the order of 3 550 1.3 10  , 

which is much smaller than 25 4250 3 10  , the exhaustive search complexity. Regarding the accuracy, 

we have observed that the differences between the results of the algorithm and the exhaustive search are 

0.5% and 0%, for the ERBB and T cell networks, respectively, over all N values for which it was practical 

to perform the exhaustive search. 

 

METHODS 

A. Equations for Computing Vulnerability Levels 

Computing the vulnerability level of a molecule or a group of molecules in a network can help to identify 

and rank the key components of the network, and discover appropriate therapeutics targets. Vulnerability 

of a molecule can be defined as the probability of having incorrect network responses when the molecule 

is dysfunctional. The dysfunction state of a molecule can be defined as failure to respond correctly to its 

input signals. In this paper, we consider stuck-at-0 (SA0) and stuck-at-1 (SA1) fault models to model the 

dysfunction of molecules, which are constantly 0, inactive, or 1, active, regardless of the activity state of 

their input signals.  

Overall, we compute the vulnerability level of a specific molecule, or a group of molecules, as 

follows: First, we simulate the fault-free (normal) network and observe the responses at the network 

output molecule, by applying all input combinations. Then we simulate the abnormal network, where the 

specific molecule or group of molecules is rendered faulty, by fixing the activity states to 0 for SA0 or to 

1 for SA1, and observe the network output responses for all input combinations. Afterwards, we compare 

the abnormal and normal network responses, to compute the probability of having incorrect network 

responses, which is the vulnerability level of that specific molecule or group of molecules. How the 

vulnerability levels are computed is further explained below with mathematical details. 

To compute the vulnerability level of a molecule, one needs to first introduce the sample space 

associated with the correct and incorrect network responses at the output. Suppose K is the number of 
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intermediate molecules in the network. Let N be the number of molecules that are simultaneously faulty, 

i.e., dysfunctional, I be the number of the network input combinations, CC be the number of clock cycles 

(time points) for which the network response is computed, and finally, let l be the subscript ranging from 

1 to ( , )C K N , indexing faulty molecules or groups of faulty molecules (an algorithm for determining the 

required CC is given in Section S1). Then, for each input combination stimulating the network in the 

presence of N faulty molecules, there will be CC number of output responses that may be correct, c, or 

erroneous, e, in each clock cycle. Therefore, the sample space S can be defined as the set of all possible 

output sequences of c and e responses over CC clock cycles, that is 

  
CC

, .S c e=  (6) 

Moreover, for the l-th faulty molecule or the l-th group of faulty molecules, we define the event lS , a 

subset of S, as the set of all output sequences of c and e responses over CC clock cycles for all input 

combinations, that is  

  1 2, ,..., .l IS v v v=  (7) 

Note that iv S , 1,..., ,i I=  is a sequence of c and e of length CC, in which having an e in the t-th 

element of iv  means that an erroneous response is observed in the t-th clock cycle. Depending on the 

possible network responses and that which molecule or group of molecules is faulty, iv s may have the 

same or different probabilities. Also note that some iv s may be identical, therefore, I is indeed the 

maximum number of elements of lS . For CC 2=  and 2I = , for example, we have 1 2{ , },lS v v=  where 

   
2

1 2, , ( , ),( , ),( , ),( , ) .v v S c e c c c e e c e e = =  

In addition, we define CC number of events as follows: 1E =  the event of having an erroneous 

network response at the output in the 1st clock cycle, …, and CCE =  the event of having an erroneous 

network response at the output in the CCth clock cycle. Note that 1E  is the set of those v elements in lS  

in Equation (7) that have an e as the 1st entry, 2E  is the set of those v elements in lS  that have an e as the 

2nd entry, and so on. We define the vulnerability level of the l-th molecule lM , Vul( )lM , as the 

probability of having an erroneous network response in the 1st clock cycle, …, or in the CCth clock cycle, 

when lM is dysfunctional. Therefore, Vul( )lM  can be written as 

 ( )
CC

1

Vul &  is dysfunctionall t l

t

M P E M
=

 
=  

 
. (8) 

Since we consider SA0 and SA1 as the fault models, Equation (8) can be expanded as follows 
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( )
CC CC

1 1

Vul &  is SA0 &  is SA1l t l t l

t t

M P E M P E M
= =

   
= +   

   
, 

 ( ) ( ) ( )
CC CC

1 1

Vul  is SA0  is SA0  is SA1  is SA1l t l l t l l

t t

M P E M P M P E M P M
= =

   
= +   

   
. (9) 

While we assume equi-probable SA0 and SA1 faults for each molecule, i.e., 

( ) ( ) is SA0  is SA1 0.5l lP M P M= =  in our computations, Equations (8) and (9) can be extended to other 

fault models and fault probabilities. 

Equation (9) is provided for computing the vulnerability level of a single molecule. However, it is 

also of interest to study the abnormal network responses when multiple molecules are faulty at the same 

time. In the large T cell network (Figure 3) and for simplicity, in the extreme signaling failure analysis 

(Figure 4), we assume N molecules are either all SA0 or all SA1 at the same time, 1.N   For this 

scenario, Equation (9) is still applicable, where lM  needs to be merely replaced with “ 1 2, ,..., NM M M ”. 

On the other hand, for the small ERBB network (Figure 1) and its extreme signaling failure analysis 

(Figure 2), we consider all possible SA0 and SA1 fault combinations for N dysfunctional molecules, 

1.N   In this scenario, we extend Equation (9) as follows 

 ( ) ( ) ( )( )
CC2

1 2 1 2 1 2

1 1

Vul , ,..., , ,..., , ,..., ,

N

N t N Nk k
k t

M M M P E M M M P M M M
= =

 
=  

 
  (10) 

where ( )  1 2, ,..., SA0, SA1
N

N k
M M M   is the k-th fault vector for the group of N dysfunctional 

molecules 1 2, ,..., and .NM M M  An example of how the vulnerabilities are computed on the ERBB 

signaling network is provided in Section S4. 

B. Proposed Algorithm for the Extreme Signaling Failure Analysis 

In this section, we provide a detailed explanation of the proposed algorithm. The extreme signaling failure 

analysis can be performed by an exhaustive search. However, the time needed by the exhaustive search 

grows exponentially as the size of the network increases, as presented earlier in the paper. To avoid this 

high computational complexity, we propose the main algorithm with the following four steps 

I. First, we compute an upper bound on the number of clock cycles needed for computing the 

vulnerability levels (Section S1), so that we prevent running network simulations longer than 

what is needed. 

II. Next, we use Equation (10) to compute ( )
1 2

Vul , ,...,
Nl l lM M M  for =1,2, and 3N . This is 

motivated by the observation [11] that typically a molecule with high vulnerability appears in 
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larger groups of molecules with high vulnerabilities, and based our experiments, 4N   is 

large enough and provides good accuracy, as described in the paragraph immediately after 

Equation (5). Thus far, ( )
1 1

max Vull lM , ( )
1 2 1 2,max Vul ,l l l lM M  and 

( )
1 2 3 1 2 3, ,max Vul , ,l l l l l lM M M  represent the extreme signaling failures when there are single, 

double and triple faults, respectively. 

III. To determine the extreme signaling failure when there are four simultaneously faulty 

molecules, 4,N =  we pick the molecular triplet, group of 1N −  faulty molecules, having the 

highest vulnerability value, e.g., ( , , )a b c . Then we compute vulnerabilities only for those 

( 1)K N− −  quadruplets, groups of N faulty molecules with 4,N =  that include ( , , )a b c , i.e., 

( , , , )la b c M . This results in ( )max Vul , , ,l la b c M  as the extreme signaling failure when there 

are 4N =  simultaneous faults. 

IV. Then, we repeat Step III for 5,..., ,N K=  to complete the extreme signaling failure analysis. 

Note that this algorithm is not limited to a specific molecular network. Furthermore, in addition to 

the vulnerability parameter used in this paper, other parameters that quantify and rank the importance of a 

molecule or a group of molecules can be used as well. 

 

CONCLUSION 

Signaling networks in cells are involved in controlling various cellular functions, through different 

signaling processes. Developing methods for the functional analysis of signaling networks is particularly 

important for understanding such complex normal and abnormal signaling processes, and can help for 

untangling the pathology of complex diseases. A fundamental question in systems biology is how 

vulnerable a signaling network is to the dysfunction of an individual or groups of molecules, where the 

dysfunction of a molecule is defined as failure to respond correctly to the input signals. The vulnerability 

levels associated with the dysfunction of molecules or groups of molecules can be measured by 

computing probabilities of having incorrect network responses in the presence of dysfunctional 

molecules, using the equations introduced and developed in Methods, Section A. 

The focus of this study is to understand what molecule or group of molecules can result in the 

most detrimental failure in the function of a given network. To answer this question, here we propose a 

systematic method to identify extreme signaling failures in molecular networks (Methods, Section B). 

The extreme signaling failure is defined to describe a pathological phenomenon in which the failure of the 

network passes the physiological tolerable noise threshold, which is quantified as the maximum 

vulnerability level. The said pathological phenomenon is characterized to be emerged from the presence 
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of one or more dysfunctional molecules in the network. While it is conceivable that different individual 

dysfunctional molecules may have different vulnerability levels, it is not clear what happens to the 

vulnerability levels, if two or more molecules are dysfunctional simultaneously. 

The extreme signaling failure analysis is initially conducted on the ERBB signaling network 

(Figure 1). We observe that the maximum vulnerability values do not increase accordingly as the number 

of concurrently faulty molecules N increases (Figure 2). More precisely, we see a maximum vulnerability 

increase going from single faults to double faults, 1 and 2N = , respectively, and then the maximum 

vulnerability no longer increases when N increases. Moreover, we observe that the smallest N for which 

we see the highest maximum vulnerability in this network is 2,N =  i.e., the double faults. This 

observation shows that in a network of 18 intermediate molecules, some selective pairs of faulty 

molecules are sufficient to create the most detrimental harm to the function of the output molecule, and 

increasing the number of simultaneously faulty molecules does not induce a worse scenario compared to 

having some specific dysfunctional pairs of molecules. 

When extreme signaling failure analysis was done on the T cell signaling network (Figure 3), 

similar to the ERBB network results, we notice that the maximum vulnerability values do not increase 

accordingly as the number of simultaneously faulty molecules N increases (Figure 4), for all of T cell 

network outputs. However, the N value that gives the highest vulnerability varies depending on the 

output. For the network outputs ap1, bcat and p70s, we see the maximum vulnerability increase going 

from single faults to double faults, 1 and 2N = , respectively, and it reaches a plateau afterwards. For 

some other network outputs such as cre, nfat, p38, shp2 and sre, the highest maximum vulnerability 

occurs when 1.N =  This implies that the functions of these outputs are more dependent on the functions 

of some specific individual faulty molecules which are sufficient to induce the extreme network failures 

at these outputs. These observations for both the ERBB and the T cell networks show that it can be 

enough to have only a few concurrently faulty molecules, to introduce the most detrimental damage to the 

whole network response, which may eventually result in the development of pathological conditions. 

We also show that the computational complexity, i.e., the running time of the proposed extreme 

signaling failure analysis algorithm (Methods, Section B) is ( )3O K , where K is the number of 

intermediate molecules in the network. This efficient algorithm is in contrast with an exhaustive search 

having an exponential running time, ( )/2KO K , that quickly becomes impractical to implement, as K 

increases. For example, for a network with 50K =  molecules, the proposed algorithm complexity is in 

the order of 
3 550 1.3 10  , which is much smaller than 

25 4250 3 10  , the exhaustive search 

complexity. 
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The extreme signaling failure algorithm makes use of another proposed algorithm (Section S1) 

that properly incorporates the effects of signaling feedbacks in the extreme signaling failure analysis. 

Essentially it determines the number of time points (clock cycles) needed for network analysis and 

simulation while computing the vulnerability levels to find the extreme signaling failures, so that we 

prevent performing unnecessarily long network simulations. Usefulness of this algorithm is demonstrated 

by computing the requited number of clock cycles for vulnerability analysis of the ERBB and the T cell 

signaling networks (Sections S2 and S3, respectively). 

Overall, the proposed algorithms have the potential to uncover certain aspects of abnormal 

signaling network behaviors that can contribute to the development of the pathology, and may suggest 

some new therapeutic strategies in the area of targeted therapy in pharmaceutical industry. This study is 

particularly important in the context of complex trait disorders with poorly understood molecular sources 

when more than one molecule is often reported to be involved in the pathogenesis of the disease.  
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SUPPLEMENTARY SECTIONS 

S1 Proposed Algorithm for Determining the Number of Required Clock Cycles to 

Compute the Vulnerabilities 

Modeling and analysis of molecular networks become more challenging if there are positive or negative 

feedback paths. Due to the feedback mechanisms, network responses may change over time because of 

some internal compensatory or regulatory mechanisms [1,2]. Feedbacks can cause delays in propagation of 

signals to the network outputs, while passing through the feedback paths. Therefore, analysis of the effects 

of feedback in computing vulnerability levels of the network molecules is of interest. More precisely, in 

this paper we are interested in determining how many clock cycles are needed to compute the vulnerability 

level of a molecule or a group of molecules, when there are feedbacks in the network. For this purpose, in 

this section we propose an algorithm that computes an upper bound on the number of clock cycles needed 

to generate the network response, to calculate its molecular vulnerabilities. Using this algorithm, one can 

specify how many times the network needs to be simulated, for a normal or abnormal signal to complete 

its propagation to the network output. This is needed in the proposed main algorithm for the extreme 

signaling failure analysis (Methods, Section B), to minimize the overall simulation time. 

The feedback paths in a network can be modeled by unit-delay memory elements called flip-flops 

[3]. In a network, if there is only one feedback path, then we intuitively need at most two clock cycles to 

see full effect of an error, i.e., the effects of an incorrect signal value of a faulty molecule on possibly other 

molecules and pathways, that collectively determine the network output response. This is because of the 

delayed response of the flip-flop in the feedback path. In fact, if after the 1st clock cycle there exists an 

erroneous signal value of a faulty molecule at the input of the feedback flip-flop, then the 2nd clock cycle 

may be needed for that error to show its full effect at the network output. This is because the feedback-

delayed erroneous signal of the faulty molecule may affect some other molecules and pathways in the 2nd 

clock cycle, which may increase the probability of incorrect responses at the network output. In general, if 

there exist F feedback paths in the network, then we need to simulate the network for at most 1F +  clock 

cycles, for an error to show its full effect at the network output. This maximum number of clock cycles is 

required, if these two conditions hold: (i) all the feedback paths are in the same pathway, connected in series 

and exhibiting F feedback flip-flops; and (ii) after the 1st clock cycle, an error appears at the input of the 

first feedback flip-flop. 

The upper bound of 1F +  clock cycles can be tightened, by finding the pathways within the 

network containing the highest number of feedback paths in series. For instance, if there exist F feedback 
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paths in the network, with L F  being the largest number of feedback paths in series on the same pathway, 

then the maximum clock cycles needed is bounded above by 1,L +  i.e., the number of clock cycles needed 

for an error to show its full effect is less than or equal to 1.L +  Therefore, to determine the maximum 

number of required clock cycles, it is sufficient to examine the connections between the network feedback 

paths and determine how many of them are serially connected in a single pathway. To do this, we define a 

graph theory topological metric called closeness (CL). The ( )0 , 1CL X Y   parameter for quantifying the 

closeness of two molecules X and Y in a network is the inverse of the distance ( ),d X Y  between the two 

molecules, defined as the length of the shortest path between the two molecules in the network graph 

 ( ) ( ), 1 , .CL X Y d X Y=  (SE1) 

Some examples of how to calculate the closeness parameter are presented in Figure S1. 

To determine the maximum number of clock cycles needed for computing the vulnerability levels 

in a network, we propose the following algorithm with four steps 

I. Identify the feedback paths and the nodes that initiate the feedbacks, in the network. If they are 

not known a priori, identify them by finding the loops in the network graph, using a graph 

algorithm such as the depth-first search algorithm [4]. 

II. Assume there exist F feedback paths in the network. Arbitrarily label the feedback initiating 

nodes as if , 1,..., .i F=  Then start with 1i = , by calculating the closeness of 1f  with respect 

to the other feedback initiating nodes jf s, j i  and 1,...,j F= . If 1( , ) 0jCL f f =  for all j 

values, it means 1f  is on no other pathway with other feedback initiating nodes, and now 2f  

has to be examined similarly, i.e., 2i = , j i  and 1,...,j F= , and so forth. However, if 

1( , ) 0jCL f f   for 0j j= , then this indicates that there is a path between 1f  and 
0j

f , i.e., the 

feedback initiating nodes 1f  and 
0j

f  are on the same pathway. This finding needs to be 

pursued in the next step. 

III. For fixed  and i j  values, e.g., 01 and i j j= = , calculate ( , )j kCL f f  for all other feedback 

initiating nodes kf s, , ,  and 1,...,k i j k F = . Depending on the CL being non-zero or zero, it 

can be identified if kf  is on the same pathway that includes both andi jf f  feedback initiating 

nodes or not. 

IV. Repeat Step III until all the feedback initiating nodes are examined. 



 

4 

Using the information obtained from executing the above steps, the algorithm finds the pathway that 

contains the largest number of feedback initiating nodes on it, in series. With this specific number being 

called L, then at most L + 1 clock cycles are needed for computing the vulnerability levels. 

Toy examples: Here we compute vulnerability levels in two toy networks (Figure S2A and Figure 

S2C) that have different number of feedback paths, to describe the relation between F and vulnerabilities. 

Note that since each network has a single pathway, we have L F=  in both networks. 

The first toy network (Figure S2A) has four nodes: 1( )x t  is the input node (molecule), the 

intermediate nodes are 2 1 3( ) ( ) (~ ( 1))x t x t x t=  −  and 3 2( ) ( )x t x t= , and 4 3( ) ( )x t x t=  is the output node, 

where “ ” is used for the AND operation and “ ~ ” is used for the NOT operation, and 3 (0) 0.x =  Herein, 

the node 3x  initiates a negative feedback to the node 2x . Since there is only one feedback path in the 

network, 1,F =  at most two clock cycles are enough, 1 2,F + =  to observe the full error effect at the output. 

To demonstrate this, we compute the vulnerability level of the node 2x  (Figure S2B), for different number 

of clock cycles CC 1,2,3,4,=  using Equation (9) (Methods, Section A). We observe that the vulnerability 

of 2x  with 1 clock cycle is 0.5 and it becomes 0.75 with 2 clock cycles, and then remains at 0.75 with 3 

and 4 clock cycles. These indicate that the full vulnerability of 2x  is 0.75 that is determined by analyzing 

the network having feedback for two clock cycles ( 1 2)F + = . In other words, two clock cycles are needed 

for the erroneous 2x  signal values to show their full effects at the network output 4x . Additionally, more 

clock cycles are not needed. 

The second toy network (Figure S2C) has five nodes: 1( )x t  is the input node, 

2 1 4 3( ) ( ( ) ( 1)) (~ ( 1))x t x t x t x t= + −  − , 3 2( ) ( )x t x t=  and 4 3( ) ( )x t x t=  are the intermediate nodes, and 5 ( )x t  

is the output node, where “ + ” is used for the OR operation, and 3 4(0) (0) 0.x x= =  Here the nodes 3x  and 

4x  initiate a negative feedback and a positive feedback to the node 2x , respectively. Since there are two 

feedback paths in the network, 2,F =  at most three clock cycles are needed, 1 3,F + =  to observe the full 

error effect of 2x  at the output. The computed vulnerability level of 2x  (Figure S2D) for different number 

of clock cycles corroborates what we stated earlier in this section, that is, 1F +  is indeed an upper bound 

and less number of clock cycles may be needed for computing vulnerabilities in a network with feedbacks. 

In fact, we observe that the full vulnerability of 2x  is 0.75, obtained using 2 clock cycles only, and analyzing 

the network for the upper bound of 1 3F + =  clock cycles is not needed (Figure S2D). In other words, 2 

clock cycles are enough for errors originated from 2x  to show their complete effects at the output 5x .  
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S2 ERBB Signaling Network – Vulnerability and the Number of Clock Cycles 

In this section, we apply the proposed algorithm in Section S1, to the ERBB signaling network (Figure 1). 

We start by identifying feedbacks in the network. Given the small size of the network, visual inspection of 

the network reveals five loops, which topologically may contain the indicators of feedback interactions. 

The five loops are (i) IGF1R → AKT1 → IGF1R, (ii) IGF1R → MEK1 → ER-𝛼 → IGF1R,  (iii) CDK4 ⇢ 

p27 ⇢ CDK4, (iv) CDK4 ⇢ p21 ⇢ CDK4, and (v) CDK2 ⇢ p27 ⇢ CDK2. Despite the existence of five 

loops, there are only four feedback initiating nodes, AKT1, ER-𝛼, p21 and p27, because p27 is common 

between two loops, i.e., the loops (iii) and (iv). Note that in the absence of prior information about the 

feedbacks, the feedback initiators may not be uniquely determined within the identified loops. For example, 

based on these five loops, one can identify IGF1R, MEK1, CDK4 and CDK2 as feedback initiators as well. 

Nevertheless, different choices for the feedback initiating molecules within these loops do not affect the 

algorithm that aims at finding the pathway that contains the largest number of feedback initiating nodes on 

it, in series. This is because if the feedback initiating nodes if  and jf  chosen from two loops are connected 

through a pathway, i.e., ( , ) 0,i jCL f f   then other choices of the feedback initiating nodes 
'

if  and '

jf  from 

the said two loops will be connected through a pathway as well, i.e., ' '( , ) 0.i jCL f f   Thus, the algorithm to 

determine L is independent of the choice of the feedback initiating nodes. 

Using the identified feedback initiators, the algorithm outputs the upper bound of 1 5L + =  clock 

cycles that may be needed for computing the vulnerability level of a molecule. This is because the algorithm 

identifies a pathway that contains all the feedback initiating molecules on it, in series. For instance, AKT1 

→ ER- → p27 ⇢ CDK4 ⇢ p21 ⇢ CDK2 → pRB is a pathway that contains all of the feedback initiating 

molecules on it. Through this specific pathway, erroneous signals originated from an upstream molecule of 

AKT1 may require five clock cycles to show their full effects on the output molecule pRB, due to the signal 

propagation delays introduced by the feedback paths connected in series on the same pathway. Computed 

using Equation (9) (Methods, Section A), Figure S3 presents the single-fault vulnerability levels versus the 

number of clock cycles CC for some molecules in the ERBB signaling network. We observe that the 

vulnerability levels of the molecules can be computed in less than five clock cycles, which confirms that it 

is sufficient to simulate and analyze the network for at most five clock cycles, as specified by the algorithm. 

S3 T Cell Signaling Network – Vulnerability and the Number of Clock Cycles 

In this section, we apply the proposed algorithm in Section S1 to the T cell signaling network (Figure 3). 

In the network, first we identify four feedback initiating nodes that are shp1, ccblp1, pag, and gab2, using 

the time indices in Table S2 and also by visual inspection of Figure 3. After using the proposed algorithm, 
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we obtain the upper bound of 1 5L + =  clock cycles, because there is one pathway that contains all the four 

feedback initiating nodes in series. Next, we compute the single-fault vulnerability levels of some molecules 

versus the number of clock cycles CC (Figure S4A), with cre considered as the output molecule, and using 

Equation (9) (Methods, Section A). We observe that the vulnerability levels of the molecules can be 

computed in less than five clock cycles, which confirms that it is sufficient to simulate and analyze the 

network for at most five clock cycles, as determined by the algorithm. 

Furthermore, we compute the double-fault vulnerability values of some pairs of molecules versus 

the number of clock cycles CC (Figure S4B), with cre considered as the output molecule, and using 

Equation (9) (Methods, Section A). As anticipated by the algorithm, the vulnerability levels of the 

molecular pairs can be computed in less than five clock cycles, i.e., it is enough to simulate and analyze the 

network for at most five clock cycles, irrespective of considering single faults or double faults. 

A noteworthy point is that when two molecules are faulty at the same time, more clock cycles may 

be needed to observe the aggregated full effects of the two erroneous signals at the network output, 

compared to single faults. However, the upper bound found by the algorithm still works for both scenarios. 

This is because the upper bound depends only on the topological positions of the feedback initiating nodes 

and the connections among them, and not on how many nodes are grouped together, to represent a group 

of faulty molecules. 

As some numerical examples, consider the scenario of zap70 and slp76 being individually faulty 

(Figure S4A), where three and one clock cycles are needed, respectively, to compute their full single 

vulnerabilities of 0.56 and 0.25, respectively. On the other hand, when they are simultaneously faulty 

(Figure S4B), four, i.e., more clock cycles are needed to compute their full double vulnerability of 0.56. 

This indicates that if multiple molecules are faulty concurrently, then there may be further delays in 

observing the entire effects of multiple erroneous signals, propagating via various pathways towards the 

network output. Additionally, we observe that the upper bound of 1 5L + =  clock cycles holds true for 

computing both single and double vulnerabilities. 

S4 An Example of Computing Vulnerabilities on the ERBB Signaling Network 

In the ERBB signaling network (Figure 1), we have 18,  2,  and CC 5,K I= = =  with the CC being 

determined using the algorithm introduced in Section S1. When 1,N =  a single faulty molecule, there are 

two events associated with the l-th faulty molecule lM  being SA0 or SA1 

 
' '

,SA0 1 2 ,SA1 1 2{ ,  },  { ,  },l lS v v S v v= =  (SE2) 
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where  
5' '

1 2 1 2, , ,  ,v v v v S c e =  for all 1,...,18.l =  Using Equation (9), single-fault vulnerability levels of 

molecules are calculated for all 1,...,18.l =  To illustrate and for CC 2,=  assume hypothetically that for the 

lM  faulty molecule we have ,SA0 {( , ),  ( , )}lS c c e e=  with the probabilities of 1( ) 0.5P v =  and 2( ) 0.5,P v =  

and ,SA1 {( , )}lS c e=  with the probability of 1( ) 1P v = . Based on the definition of tE , it can be shown that 

1 2 {( ,  )}E E e e= =  when lM  is SA0, whereas 1E =  and 2 {( ,  )}E c e=  when lM  is SA1. Using Equation 

(9), vulnerability level of l-th faulty molecule can be computed for equi-probable SA0 and SA1 faults as 

follows 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 2 1 2

2 1

Vul  is SA0  is SA0  is SA1  is SA1 ,

( ,  ) 0.5 ( ,  ) 0.5,

0.5 0.5,

0.5 0.5  1 0.5 0.75.

l l l l lM P E E M P M P E E M P M

P e e P c e

P v P v

=  + 

= +

= +

=  +  =

 (SE3) 

Similarly, when 2,N =  a pair of faulty molecules, there are four events associated with each pair 

of faulty molecules 

 
' ' '' '' ''' '''

,SA0-SA0 1 2 ,SA0-SA1 1 2 ,SA1-SA0 1 2 ,SA1-SA1 1 2{ ,  },  { ,  },  { ,  },  { ,  },l l l lS v v S v v S v v S v v= = = =  (SE4) 

where  
5' ' '' '' ''' '''

1 2 1 2 1 2 1 2, , ,  , ,  , ,  , ,v v v v v v v v S c e =  for all 1,...,153l =  (there are 153 possible pairs, i.e., 

( )18,  2 153C = ). Then, Equation (10) is used to compute the double-fault vulnerability level of each pair 

as follows 

 

( ) ( )

( )

( )

1 2 1 2 1 2

1 2 1 2

1 2 1 2

CC

1

CC

1

CC

1

Vul ,  is SA0 &  is SA0  is SA0 &  is SA0

 is SA0 &  is SA1  is SA0 &  is SA1

 is SA1 &  is SA0  is SA1 &  is SA0

l l t l l l l

t

t l l l l

t

t l l l l

t

M M P E M M P M M

P E M M P M M

P E M M P M M

=

=

=

 
=  

 

 
+  

 

 
+  

 

+ ( )
1 2 1 2

CC

1

 is SA1 &  is SA1  is SA1 &  is SA1 ,t l l l l

t

P E M M P M M
=

 
 
 

 (SE5) 

where 1 2 1 2, 1,...,18,  l l l l=  , with equi-probable and independent SA0 and SA1 faults. These steps are 

repeated for all 2,N   to complete the ERBB network extreme signaling failure analysis. Note that what 

we observe in Figure 2 are maximum vulnerabilities, e.g., max Vul( )l lM  and ( )
1 2 1 2,max Vul ,l l l lM M  for 

1 and 2N = , respectively. To compute the vulnerability levels for the T cell signaling network, the 

considered parameter values are 64,  8,  and CC 5.K I= = =  
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

  

 

Figure S1. Numerical examples of the closeness parameter CL between two molecules. 
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Figure S2. Toy networks illustrating the number of clock cycles needed for the erroneous signal of a 

faulty (dysfunctional) molecule to show its full effect at the network output. (A) Toy network with one 

feedback path. (B) Output truth table for fault-free and faulty 2x . (C) Toy network with two feedback 

paths. (D) Output truth table for fault-free and faulty 2x . Note: The green solid edges represent 

activatory interactions and the red dashed edges represent inhibitory interactions. 
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Figure S3. Vulnerability versus the number of clock cycles CC for some molecules in the ERBB 

signaling network. 
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Figure S4. Vulnerability versus the number of clock cycles CC for some single and pairs of molecules 

in the T cell signaling network, with “cre” considered as the output molecule. (A) Single-fault 

vulnerability levels. (B) Double-fault vulnerability levels. 
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SUPPLEMENTARY TABLES 

 

Table S1. The Boolean equations for the ERBB signaling network (Figure 1) provided in [17]. In the 

equations, “x” is used for the AND operation, “+” is used for the OR operation, and “~” is used for the 

NOT operation. 

 

Molecules Boolean Equations 

AKT1 AKT1 = ERBB1 + ERBB1_2 + ERBB1_3 + ERBB2_3 + 

IGF1R 

c-MYC c-MYC = AKT1 + MEK1 + ER-𝛼 

CDK2 CDK2 = CyclinE1 x (~ p21) x (~ p27) 

CDK4 CDK4 = CyclinD1 x (~ p21) x (~ p27) 

CDK6 CDK6 = CyclinD1 

CyclinD1 CyclinD1 = ER-𝛼 x c-MYC x (AKT1 + MEK1) 

CyclinE1 CyclinE1 = c-MYC 

EGF EGF: Input 

ER-𝛼 ER-𝛼 = AKT1 + MEK1 

ERBB1 ERBB1 = EGF 

ERBB1_2 ERBB1_2 = ERBB1 x ERBB2 

ERBB1_3 ERBB1_3 = ERBB1 x ERBB3 

ERBB2 ERBB2 = EGF 

ERBB2_3 ERBB2_3 = ERBB2 x ERBB3 

ERBB3 ERBB3 = EGF 

IGF1R IGF1R = (ER-𝛼 + AKT1) x (~ ERBB2_3) 

MEK1 MEK1 = ERBB1 + ERBB1_2 + ERBB1_3 + ERBB2_3 + 

IGF1R 

p21 p21 = ER-𝛼 x (~ CDK4) x (~ AKT1) x (~ c-MYC) 

p27 p27 = ER-𝛼 x (~ CDK4) x (~ CDK2) x (~ AKT1) x (~ c-

MYC) 

pRB pRB = (CDK4 x CDK6) + (CDK4 x CDK6 x CDK2) 
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Table S2. The Boolean equations for the T cell signaling network (Figure 3), provided in [2]. In the 

equations, “x” is used for the AND operation. “+” is used for the OR operation, and “~” is used for the 

NOT operation. The symbol “t” represents the current time whereas “t+1” stands for the next time instant. 

 

Molecules Boolean Equations 

abl(t) abl(t) = lckp1(t) + fyn(t) 

akap79 akap79 = 0 

ap1(t) ap1(t) = fos(t) x jun(t) 

bad(t) bad(t) = ~ pkb(t) 

bcat(t) bcat(t) = ~ gsk3(t) 

bcl10 bcl10 = 1 

bclx1(t) bclx1 = ~ bad(t) 

ca(t) ca(t) = ip3(t) 

cabin1(t) cabin1(t) = ~ camk4(t) 

calcin(t) calcin(t) = (~ cabin1(t)) x (~ akap79) x (~ calpr1) x cam(t) 

calpr1 calpr1 = 0 

cam(t) cam(t) = ca(t) 

camk2(t) camk2(t) = cam(t) 

camk4(t) camk4(t) = cam(t) 

card11 card11 = 1 

card11a(t) card11a(t) = card11 x bcl10 x malt1 

cblc(t+1) cblb(t+1) = ~ cd28 

ccblp1(t+1) ccblp1(t+1) = zap70(t) 

ccblp2(t+1) ccblp2(t+1) = fyn(t) 

cd28 Input 

cd4 Input 

cd45 cd45 = 1 

cdc42 cdc42 = 0 

cre(t) cre(t) = creb(t) 

creb(t) creb(t) = rsk(t) 

csk(t) csk(t) = pag(t) 
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Molecules Boolean Equations 

cyc1(t) cyc1(t) = ~ gsk3(t) 

dag(t) dag(t) = (~ dgk(t)) x plcga(t) 

dgk(t+1) dgk(t+1) = tcrb(t) 

erk(t) erk(t) = mek(t) 

fkhr(t) fkhr(t) = ~ pkb(t) 

fos(t) fos(t) = erk(t) 

fyn(t) fyn(t) = tcrb(t) + (lckp1(t) x cd45) 

gab2(t+1) gab2(t+1) = lat(t) x zap70(t) x (gads(t) + grb2(t)) 

gadd45 gadd45 = 1 

gads(t) gads(t) = lat(t) 

gap gap = 0 

grb2(t) grb2(t) = lat(t) 

gsk3(t) gsk3(t) = ~ pkb(t) 

hpk1(t) hpk1(t) = lat(t) 

ikb(t) ikb(t) = ~ ikkab(t) 

ikkab(t) ikkab(t) = ikkg(t) x camk2(t) 

ikkg(t) ikkg(t) = pkcth(t) x card11a(t) 

ip3(t) ip3(t) = plcga(t) 

itk(t) itk(t) = slp76(t) x zap70(t) x pip3(t) 

jnk(t) jnk(t) = mekk1(t) + mkk4(t) 

jun(t) jun(t) = jnk(t) 

lat(t) lat(t) = zap70(t) 

lckp1(t) lckp1(t) = (~ shp1(t)) x (~ csk(t)) x cd45 x cd4 

lckp2(t) lckp2(t) = tcrb(t) 

malt1 malt1 = 1 

mek(t) mek(t) = raf(t) 

mekk1(t) mekk1(t) = hpk1(t) + cdc42 + rac1p2(t) 

mkk4(t) mkk4(t) = mlk3(t) + mekk1(t) 

mlk3(t) mlk3(t) = hpk1(t) + rac1p1(t) 

nfat(t) nfat(t) = calcin(t) 
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Molecules Boolean Equations 

nfkb(t) nfkb(t) = ~ ikb(t) 

p21c(t) p21c(t) = ~ pkb(t) 

p27k(t) p27k(t) = ~ pkb(t) 

p38(t) p38(t) = ((~ gadd45) x zap70(t)) + mekk1(t) 

p70s(t) p70s(t) = pdk1(t) 

pag(t) pag(t) = ~ tcrb(t) 

pag(t+1) pag(t+1) = fyn(t) 

pdk1(t) pdk1(t) = pip3(t) 

pi3k(t) pi3k(t) = ((~ cblb(t)) x X(t)) + ((~ cblb(t)) x lckp2(t)) 

pip3(t) pip3(t) = pi3k(t) x (~ ship1) x (~ pten) 

pkb(t) pkb(t) = pdk1(t) 

pkcth(t) pkcth(t) = pdk1(t) x dag(t) x vav1(t) 

plcga(t) plcga(t) = plcgb(t) x (~ ccblp2(t)) x slp76(t) x zap70(t) x 

vav1(t) x (itk(t) + rlk(t)) 

plcgb(t) plcgb(t) = lat(t) 

pten pten = 0 

rac1p1(t) rac1p1(t) = vav1(t) 

rac1p2(t) rac1p2(t) = vav3(t) 

raf(t) raf(t) = ras(t) 

ras(t) ras(t) = (~ gap) x rasgrp(t) x sos(t) 

rasgrp(t) rasgrp(t) = dag(t) 

rlk(t) rlk(t) = lckp1(t) 

rsk(t) rsk(t) = erk(t) 

sh3bp2(t) sh3bp2(t) = zap70(t) x lat(t) 

ship1 ship1 = 0 

shp1(t+1) shp1(t+1) = (~ erk(t)) x lckp1(t) 

shp2(t) shp2(t) = gab2(t) 

slp76(t) slp76(t) = (~ gab2(t)) x zap70(t) x gads(t) 

sos(t) sos(t) = grb2(t) 

sre(t) sre(t) = rac1p2(t) + cdc42 
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Molecules Boolean Equations 

tcrb(t) tcrb(t) = (~ ccblp1(t)) x tcrlig 

tcrlig Input 

tcrp(t) tcrp(t) = (tcrb(t) x lckp1(t)) + (tcrb(t) x fyn(t)) 

vav1(t) vav1(t) = (sh3bp2(t) x zap70(t)) + X(t) 

vav3(t) vav3(t) = sh3bp2(t) 

X(t) X(t) = cd28 

zap70(t) zap70(t) = (~ ccblp1(t)) x abl(t) x tcrp(t) 
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